Experimental microalloyed steel subjected to tempering heat treatments and its effect on hydrogen embrittlement

The influence of both, time and annealing temperature over the susceptibility to hydrogen embrittlement was evaluated in experimental microalloyed steel. Tempering heat treatments were carried out in a temperature range of 200-600 °C with several heat treatment times. They were hydrogen charged cath...

Descripción completa

Autores Principales: Villalobos, Julio, Serna, Sergio, Campillo, Bernardo, Flores, Osvaldo, López Martínez, Edgar
Formato: Artículo
Idioma: Español
Publicado: Universidad Tecnológica de Panamá 2016
Materias:
Acceso en línea: http://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/590
http://ridda2.utp.ac.pa/handle/123456789/1806
Sumario: The influence of both, time and annealing temperature over the susceptibility to hydrogen embrittlement was evaluated in experimental microalloyed steel. Tempering heat treatments were carried out in a temperature range of 200-600 °C with several heat treatment times. They were hydrogen charged cathodically in a solution of H2SO4, using a current density of 40 mA/cm² during 1 and 12 hours of exposure. Susceptibility to hydrogen embrittlement and its effect on the mechanical properties in different treatment conditions were evaluated by tensile test. Also, were conducted hydrogen permeability tests to determine effective diffusion coefficients (Deff). The results showed that the mechanical properties decrease in ultimate tensile strength (UTS) and yield stress (YS) values as function of charging cathodic hydrogen times, without a clear trend over time and temperature heat treatment.