Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies

Exposition of humans to non-ionizing radiation at high frequencies has become ubiquitous due to the higher number of systems operating in that frequency range such as cell phones, wireless networks, and communication systems. The modeling of the impact of this type of radiation is an important issue...

Descripción completa

Autores Principales: Carballo-Madrigal, Jose Alberto, Rimolo-Donadio, Renato, Schuster, Christian
Formato: Artículo
Idioma: Inglés
Publicado: Editorial Tecnológica de Costa Rica (entidad editora) 2018
Materias:
Acceso en línea: https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/3634
https://hdl.handle.net/2238/11806
id RepoTEC11806
recordtype dspace
spelling RepoTEC118062020-09-25T23:12:02Z Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies Simulación Electromagnética de Absorción de Radiación Electromagnética en el rango GHz Carballo-Madrigal, Jose Alberto Rimolo-Donadio, Renato Schuster, Christian Bioelectromagnetism Computational Electromagnetics Finite Integration Technique Finite Element Method Method of Moments Specific Absorption Rate. Bioelectromagnetismo Electromagnetismo Computacional Método de Elementos Finitos Método de Integración Finita Métodos de los Momentos Tasa de Absorción Específica. Exposition of humans to non-ionizing radiation at high frequencies has become ubiquitous due to the higher number of systems operating in that frequency range such as cell phones, wireless networks, and communication systems. The modeling of the impact of this type of radiation is an important issue due to potential short and long-term health effects and for the establishment of regulatory safety limits. From the simulation point of view, this is a challenging task since the wavelengths of interest are much smaller than the typical dimensions of a human body, which leads to the requirement of very fine discretization of the geometrical models and the consequent high demand of computational resources and long execution times.This article studies the feasibility of a full-wave simulation of field absorption at high frequencies, up to 10 GHz, with general purpose numerical methods and geometries with sizes in the order of a human body. Simple geometries are analyzed, assuming the material properties of fresh water for their inner region. Three different methods are evaluated: the finite integration technique (FIT), finite element method (FEM), and method of moments (MoM), to determine the result convergence and required computational resources for each solution. The results show that already at 10 GHz it is difficult to perform the analysis with moderate computational power (up to 64 GB RAM), but some approximations might be exploited since field penetration in that frequency range is mostly limited to the surface region. La exposición humana a radiaciones no ionizantes en alta frecuencia se ha vuelto común debido a la gran cantidad de sistemas que operan en ese rango, tales como teléfonos celulares, redes inalámbricas de datos y sistemas de comunicación en general. Modelar el impacto de este tipo de radiaciones es importante debido a los potenciales riesgos a la salud humana a corto y largo plazo, así como para la definición de límites de seguridad. Desde la perspectiva de la simulación numérica, esto es una tarea difícil debido a que las longitudes de onda asociadas son mucho más pequeñas que la dimensión típica del cuerpo humano, lo que resulta en un requerimiento de discretización muy fina de los modelos geométricos, con una consecuente alta demanda en los recursos de computación y largos tiempos de ejecución.En este artículo se estudia la factibilidad de realizar simulaciones de onda completa para estimar el campo electromagnético absorbido en alta frecuencia, hasta 10 GHz, con solucionadores numéricos de propósito general y geometrías con tamaños relevantes en relación al tamaño del cuerpo humano. Geometrías simples son analizadas, definiendo las propiedades del agua fresca para su región interna. Tres diferentes métodos son evaluados: el método de integración finita (FIT), el método de elementos finitos (FEM) y el método de los momentos (MoM), con la intención de determinar la convergencia del resultado y los recursos computacionales necesarios en cada caso. Los resultados indican que a 10 GHz se torna difícil realizar dichos análisis con un recurso computacional moderado (hasta 64 GB RAM), pero algunas aproximaciones podrían ser explotadas debido a que la penetración del campo en ese rango de frecuencias esta principalmente acotada a la región cercana a la superficie del objeto. 2018-06-29 2020-09-25T23:12:02Z 2020-09-25T23:12:02Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/3634 10.18845/tm.v31i2.3634 https://hdl.handle.net/2238/11806 eng https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/3634/pdf application/pdf Editorial Tecnológica de Costa Rica (entidad editora) Tecnología en marcha Journal; Vol. 31 No. 2: Abril-Junio 2018; 171-182 Revista Tecnología en Marcha; Vol. 31 Núm. 2: Abril-Junio 2018; 171-182 2215-3241 0379-3982
institution Tecnológico de Costa Rica
collection Repositorio TEC
language Inglés
topic Bioelectromagnetism
Computational Electromagnetics
Finite Integration Technique
Finite Element Method
Method of Moments
Specific Absorption Rate.
Bioelectromagnetismo
Electromagnetismo Computacional
Método de Elementos Finitos
Método de Integración Finita
Métodos de los Momentos
Tasa de Absorción Específica.
spellingShingle Bioelectromagnetism
Computational Electromagnetics
Finite Integration Technique
Finite Element Method
Method of Moments
Specific Absorption Rate.
Bioelectromagnetismo
Electromagnetismo Computacional
Método de Elementos Finitos
Método de Integración Finita
Métodos de los Momentos
Tasa de Absorción Específica.
Carballo-Madrigal, Jose Alberto
Rimolo-Donadio, Renato
Schuster, Christian
Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies
description Exposition of humans to non-ionizing radiation at high frequencies has become ubiquitous due to the higher number of systems operating in that frequency range such as cell phones, wireless networks, and communication systems. The modeling of the impact of this type of radiation is an important issue due to potential short and long-term health effects and for the establishment of regulatory safety limits. From the simulation point of view, this is a challenging task since the wavelengths of interest are much smaller than the typical dimensions of a human body, which leads to the requirement of very fine discretization of the geometrical models and the consequent high demand of computational resources and long execution times.This article studies the feasibility of a full-wave simulation of field absorption at high frequencies, up to 10 GHz, with general purpose numerical methods and geometries with sizes in the order of a human body. Simple geometries are analyzed, assuming the material properties of fresh water for their inner region. Three different methods are evaluated: the finite integration technique (FIT), finite element method (FEM), and method of moments (MoM), to determine the result convergence and required computational resources for each solution. The results show that already at 10 GHz it is difficult to perform the analysis with moderate computational power (up to 64 GB RAM), but some approximations might be exploited since field penetration in that frequency range is mostly limited to the surface region.
format Artículo
author Carballo-Madrigal, Jose Alberto
Rimolo-Donadio, Renato
Schuster, Christian
author_sort Carballo-Madrigal, Jose Alberto
title Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies
title_short Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies
title_full Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies
title_fullStr Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies
title_full_unstemmed Full-Wave Simulation of Body Absorption due to Radiated Fields at GHz Frequencies
title_sort full-wave simulation of body absorption due to radiated fields at ghz frequencies
publisher Editorial Tecnológica de Costa Rica (entidad editora)
publishDate 2018
url https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/3634
https://hdl.handle.net/2238/11806
_version_ 1796140665285902336
score 12.041648