Effect of organic nitrogen and carbon mineralization on sediment organic matter accumulation in fish ponds

In aquaculture, ponds with high loads of organic inputs, organic matter accumulates at the bottom over time. Uneaten feed, senescent phytoplankton and faeces are the principal sources of accumulated material, but quanti¢cations are scarce. The sedimented organic matter develops into a £occulent laye...

Descripción completa

Autores Principales: Jiménez, Ricardo, Verdegem, Marc, van Dam, Anne A., Verreth, Johan
Formato: Artículo
Idioma: Inglés
Publicado: Aquaculture Research 2020
Materias:
Acceso en línea: http://hdl.handle.net/11056/18305
Sumario: In aquaculture, ponds with high loads of organic inputs, organic matter accumulates at the bottom over time. Uneaten feed, senescent phytoplankton and faeces are the principal sources of accumulated material, but quanti¢cations are scarce. The sedimented organic matter develops into a £occulent layer in which di¡erent processes transformthematerial into inorganic forms. A better understanding of factors influencing organic matter accumulation/decomposition in the sediment is needed to better understand and manage the dynamics of nitrogen in fish ponds. In this study, the rate of mineralization of organic nitrogen and the nitrogen flux between the sediment and the water column were measured. Organic matter accumulation in fish ponds was quanti¢ed, and the data were used to construct, calibrate and validate a dynamic simulation model of organic matter deposition/decomposition in fish ponds. The accumulating material consisted of dead phytoplankton, fish faeces and uneaten feed. Through model calibration, the proportion of these materials in the total accumulated organic matter was determined. In the model, gross photosynthetic rate was estimated from an empirical relationship with feed input. After calibration, the model was validated using independent data. The model simulated well the concentrations of organic carbon and nitrogen in the sediments but it may be developed further, especially by considering the e¡ects of resuspension.