Seismic Response of Single-Degree-of-Freedom (SDOF) Structural Fuse Systems

Passive energy dissipation (PED) devices have been implemented to enhance structural performance by reducing seismically induced structural damage. In this paper metallic dampers are defined to be structural fuses (SF) when they are designed such that all damage is concentrated on the PED devices, a...

Descripción completa

Autores Principales: Vargas, Ramiro, Bruneau, Michel
Formato: Artículo
Idioma: Inglés
Inglés
Publicado: 2017
Materias:
Acceso en línea: http://ridda2.utp.ac.pa/handle/123456789/2816
http://ridda2.utp.ac.pa/handle/123456789/2816
Sumario: Passive energy dissipation (PED) devices have been implemented to enhance structural performance by reducing seismically induced structural damage. In this paper metallic dampers are defined to be structural fuses (SF) when they are designed such that all damage is concentrated on the PED devices, allowing the primary structure to remain elastic. Following a damaging earthquake, only the dampers would need to be replaced, making repair works easier and more expedient. Furthermore, SF introduce self-centering capabilities to the structure in that, once the ductile fuse devices have been removed, the elastic structure would return to its original position. A comprehensive parametric study is conducted leading to the formulation of the SF concept, and allowing to identify the possible combinations of key parameters essential to ensure adequate seismic performance for SF systems. Nonlinear time history analyses are conducted for several combinations of parameters, in order to cover the range of feasible designs. The effects of earthquake duration and strain- hardening on response of short and long period systems are also considered as part of this process.