Fabrication of filaments of PCL and PVA reinforced with HAp to be used in 3D Printing

The aim of this work was the manufacturing of polyvinyl alcohol (PVA) and polycaprolactone (PCL) filaments to be used in 3D printing with Fused Deposition Modeling (FDM) technology. This study was first oriented in the fabrication of filaments with these biopolymers by using extrusion and then in th...

Descripción completa

Autor Principal: Guillén-Girón, Teodolito
Formato: Artículo
Idioma: Español
Publicado: Editorial Tecnológica de Costa Rica (entidad editora) 2018
Materias:
Acceso en línea: https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/3624
https://hdl.handle.net/2238/11796
Sumario: The aim of this work was the manufacturing of polyvinyl alcohol (PVA) and polycaprolactone (PCL) filaments to be used in 3D printing with Fused Deposition Modeling (FDM) technology. This study was first oriented in the fabrication of filaments with these biopolymers by using extrusion and then in the internal reinforcement of the filaments with hydroxyapatite (HAp) in order to improve their mechanical properties. Previous to the manufacturing process, PVA, PCL and HAp were characterized by using X-ray diffraction to observe the crystallographic order of the polymeric chains. The infrared spectroscopy was used to analyze the functional groups that are present in these biopolymers and consequently their possible influence during the extrusion. Thermal analysis were vitals in order to stablish the manufacturing conditions including the melting point and degradation temperature of the tested materials. This study showed the challenges of the implant manufacturing by using 3D printing with biopolymers. The obtained results evidence that attention should be placed in the fabrication of biopolymeric filaments for future development of functional and personalized implants.