Contrasting Thermal Strategies of Montane Neotropical Bats at High Elevations

In the Neotropics, captive vespertilionid bats substantially reduce their metabolic rate at low ambient temperatures, similar to their temperate counterparts, whereas the ability of phyllostomids to lower metabolic rate seems to be more limited, even in mountain species. Nevertheless, field data on...

Full description

Main Authors: Garin, Inazio, Chaverri Echandi, Gloriana, Jimenez, Lide, Castillo Salazar, Cristian, Aihartza, Joxerra
Format: Artículo
Language: Inglés
Published: 2018
Subjects:
Online Access: https://www.sciencedirect.com/science/article/pii/S0306456518302304
http://hdl.handle.net/10669/76187
Summary: In the Neotropics, captive vespertilionid bats substantially reduce their metabolic rate at low ambient temperatures, similar to their temperate counterparts, whereas the ability of phyllostomids to lower metabolic rate seems to be more limited, even in mountain species. Nevertheless, field data on the thermal behaviour of syntopic individuals from these two families is lacking. Consequently, we aimed to test whether torpor was more common and deeper in vesper bats compared to leaf-nosed bats by studying skin temperature (Tsk) variation in individuals experiencing the same environmental conditions at a mountain area. Bats experienced ambient temperatures below 15 °C. Average Tsk was 10 °C in Myotis oxyotus gardneri (Vespertilionidae) during the day, while Sturnira burtonlimi (Phyllostomidae) regulated diurnal Tsk above 30 °C. Constant food availability may explain why diurnal Sturnira burtonlimi pay the high energetic cost required to remain normothermic and to defend a wide Ta–Tsk gap but further studies are needed to elucidate additional strategies that may be employed by these bats to reduce the energetic demands of normothermy. Our study shows that the contrasting thermal strategies and torpor use adopted by vespertilionid insectivores and phyllostomid frugivores in captive settings also occur in free-ranging conditions, thus providing a basis to develop further studies with predictions more accurately rooted in field data.