GEOCHRONOLOGICAL SYNTHESIS OF MAGMATISM, METAMORPHISM AND METALLOGENY OF COSTA RICA, CENTRAL AMERICA

A comprehensive compilation of 651 (since 1968) radiometric ages determinations (415 40Ar/39Ar, 211 K/Ar, 5 U/Th, 4 Rb/Sr, 2 U/Pb, and 13 fission track thermochronology ages using zircon) provides a complete picture of the igneous stratigraphy of Costa Rica, and information about the age of the m...

Descripción completa

Autores Principales: Alvarado Induni, Guillermo E., Gans, Phillipe B.
Formato: Artículo
Idioma: Español
Publicado: Universidad de Costa Rica 2011
Materias:
Acceso en línea: http://revistas.ucr.ac.cr/index.php/geologica/article/view/1836
http://hdl.handle.net/10669/22411
Sumario: A comprehensive compilation of 651 (since 1968) radiometric ages determinations (415 40Ar/39Ar, 211 K/Ar, 5 U/Th, 4 Rb/Sr, 2 U/Pb, and 13 fission track thermochronology ages using zircon) provides a complete picture of the igneous stratigraphy of Costa Rica, and information about the age of the major metamorphic and metalogenic events in the region. Igneous rocks of Late Jurassic to Middle Eocene age (~ 160 to ~ 41 Ma), mainly accreted ophiolites. At the beginning of Campanian time (~ 71 Ma), the actual subduction zone was established, represented by volcano-sedimentary rocks of basic to felsic composition. However, voluminous subalkaline, primary volcanic rocks appeared only after ~ 29 Ma. Intrusive to hypabyssal granitic to gabboic plutons, stocks, equivalent dykes and sills, are widely exposed in the Talamanca range (~ 12.4 - 7.8 Ma), Cerros de Escazú (~ 6.0 - 5.9 Ma), and Fila Costeña (~ 18.3 - 16.8 and ~ 14.8 - 11.1 Ma), Tapantí-Montes del Aguacate-Carpintera (~ 4.2 - 2.2 Ma) and Guacimal (~ 6.4 - 5.2 Ma). Arc rocks between 29 and 11 Ma are known in the San Carlos plains and in southern Costa Rica. The location and age of the igneous rocks indicated that there was a 20°counterclockwise rotation of the arc (termed as Proto-Volcanic Front) between 15 and 8 Ma, with a pole of rotation centered on southern Costa Rica. This rotation is attributed to deformation in the overriding plate (shortening in the south coeval with extension in the NW), accompanied by trench retreat in the south. At ~ 3.45 Ma arc-related volcanism shut off in southern part of the region, but local acid-adakite volcanism persisted in the Talamanca range (4.2 - 0.95 Ma) due to the subduction of the Cocos Ridge. The Paleo-Volcanic Front is represented by arc-related rocks (8 - 3.5 Ma) along the length of Costa Rica, parallel to but in front of the modern arc. This activity was followed by the Monteverde (2.1 - 1.1 Ma) andesitic/basaltic effusive event, which progressively volcanoes grew mainly during the last 0,6 Ma. In general, modern volcanoes represent three volcanic episodes: ancestral cone/shield building at ~ 1,61 - 0,85 Ma (Proto-Cordillera), overlapping in part with Monteverde volcanism; a major constructive event at ~ 0,74 - ~ 0,2 Ma (Paleo-Cordillera), and a relatively small but still active volcanism at 0,25 - 0 Ma (Neo-Cordillera). Submarine volcanism in the Pacific is represented by the Fisher Ridge (30.0 and 19.2 Ma), the Cocos Ridge (14,5 – 0,6 Ma), including the sub-aerial volcanism of Cocos Island (2,2 - 1,5 Ma). The major magmatic, metamorphic and metallogenic events are clearly related to major geotectonic events, including regional unconformities, at Upper Cretaceous (~ 82 Ma), Middle Eocene (~ 45 Ma) and Upper Miocene (~ 8 Ma).