Algebraic jet spaces and Zilber’s dichotomy in DCFA

This is the first of two papers devoted to the proof of Zilber’s dichotomy for the case of difference-differential fields of characteristic zero. In this paper we use the techniques exposed in [9] to prove a weaker version of the dichotomy, more precisely, we prove the following: in DCFA the canonic...

Descripción completa

Autor Principal: Bustamante Medina, Ronald F.
Formato: Artículo
Idioma: Español
Publicado: 2015
Acceso en línea: http://revistas.ucr.ac.cr/index.php/matematica/article/view/308
http://hdl.handle.net/10669/12966
Sumario: This is the first of two papers devoted to the proof of Zilber’s dichotomy for the case of difference-differential fields of characteristic zero. In this paper we use the techniques exposed in [9] to prove a weaker version of the dichotomy, more precisely, we prove the following: in DCFA the canonical base of a finite-dimensional type is internal to the fixed field of the field of constants. This will imply a weak version of Zilber’s dichotomy: a finite-dimensional type of SU-rank 1 is either 1-based or non-orthogonal to the fixed field of the field of constants.