Valores propios asociados al operador de Hill unidimensional. Caso general.

We study Hill’s equation with general boundary conditions and white noise potential.In [3] they solve the problem with Dirichlet conditions, leaving the general case unresolved.The problem is important both from the theoretical and the applied point of view, giventhe range of applications of the sub...

Full description

Main Authors: Cambronero, Santiago, Alfaro, Marco
Format: Artículo
Language: Español
Published: 2015
Online Access: http://revistas.ucr.ac.cr/index.php/matematica/article/view/280
http://hdl.handle.net/10669/12929
id RepoKERWA12929
recordtype dspace
spelling RepoKERWA129292017-08-08T18:50:22Z Valores propios asociados al operador de Hill unidimensional. Caso general. Valores propios asociados al operador de Hill unidimensional. Caso general. Cambronero, Santiago Alfaro, Marco We study Hill’s equation with general boundary conditions and white noise potential.In [3] they solve the problem with Dirichlet conditions, leaving the general case unresolved.The problem is important both from the theoretical and the applied point of view, giventhe range of applications of the subject. Following [6], we give a description of thestandard brownian motion process, and mention some of its basic properties. We thenintroduce the equation to be studied, the remaining of the work being devoted to theanalysis of the asymptotic of eigenvalues.Keywords: Hill’s operator, boundary conditions, Brownian motion, eigenvalues. Estudiamos la ecuaci´on de Hill con condiciones generales de frontera y potencial ruidoblanco. En [3] los autores resuelven el problema con condiciones de Dirichlet, dejandoel caso general sin resolver. El problema reviste importancia tanto desde un punto devista te´orico como aplicado, dado el rango de aplicaciones del tema. Siguiendo a [6],hacemos una descripci´on del movimiento browniano est´andar y sus propiedades b´asicas,para luego introducir la ecuaci´on que ser´a nuestro objeto de estudio. Posteriormentehacemos el estudio del comportamiento asint´otico de los valores propios.Palabras clave: Operador de Hill, condiciones de frontera, movimiento Browniano, valorespropios. 2015-05-19T18:48:26Z 2015-05-19T18:48:26Z 2009-02-25 00:00:00 2015-05-19T18:48:26Z info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://revistas.ucr.ac.cr/index.php/matematica/article/view/280 http://hdl.handle.net/10669/12929 10.15517/rmta.v14i1.280 es Revista de Matemática: Teoría y Aplicaciones Vol. 14 Núm. 1 2009 45-64 application/pdf
institution Universidad de Costa Rica
collection Repositorio KERWA
language Español
description We study Hill’s equation with general boundary conditions and white noise potential.In [3] they solve the problem with Dirichlet conditions, leaving the general case unresolved.The problem is important both from the theoretical and the applied point of view, giventhe range of applications of the subject. Following [6], we give a description of thestandard brownian motion process, and mention some of its basic properties. We thenintroduce the equation to be studied, the remaining of the work being devoted to theanalysis of the asymptotic of eigenvalues.Keywords: Hill’s operator, boundary conditions, Brownian motion, eigenvalues.
format Artículo
author Cambronero, Santiago
Alfaro, Marco
spellingShingle Cambronero, Santiago
Alfaro, Marco
Valores propios asociados al operador de Hill unidimensional. Caso general.
author_sort Cambronero, Santiago
title Valores propios asociados al operador de Hill unidimensional. Caso general.
title_short Valores propios asociados al operador de Hill unidimensional. Caso general.
title_full Valores propios asociados al operador de Hill unidimensional. Caso general.
title_fullStr Valores propios asociados al operador de Hill unidimensional. Caso general.
title_full_unstemmed Valores propios asociados al operador de Hill unidimensional. Caso general.
title_sort valores propios asociados al operador de hill unidimensional. caso general.
publishDate 2015
url http://revistas.ucr.ac.cr/index.php/matematica/article/view/280
http://hdl.handle.net/10669/12929
_version_ 1658175751153778688
score 11.805171