Algoritmos Numéricos para el Problema de Restauración de Imágenes usando el Método de las Proyecciones Alternantes

The projection algorithms have evolved from the alternating projection method proposed by J. von Neumann in 1933, who treated the problem of finding the projection of a given point in a Hilbert space onto the intersection of two closed subspaces. Recent researches have been centered in techniques fo...

Descripción completa

Autor Principal: Escalante, René
Formato: Artículo
Idioma: Español
Publicado: 2015
Acceso en línea: http://revistas.ucr.ac.cr/index.php/matematica/article/view/236
http://hdl.handle.net/10669/12880
Sumario: The projection algorithms have evolved from the alternating projection method proposed by J. von Neumann in 1933, who treated the problem of finding the projection of a given point in a Hilbert space onto the intersection of two closed subspaces. Recent researches have been centered in techniques for accelerate the convergence ofthe method and to exploit the multiprocessing. In this work we considered the image restoration problem. In most techniques developed to solved it have used iterative algorithms; one of them consists of using alternating orthogonal projections. We carried out one chronological looking back of different techniques in which has been applied the method of the alternating orthogonal projections to the problem of imagen restoration, until arriving at the recent approach of Combettes (1997-1999), on where the restoration process is based on the computation of approximate projections (i.e., subgradient projections), instead of exact projections