Los valores del juego de parada óptima para medias aritméticas de variables de Bernoulli

We study optimal stopping problems for generalized averages of identically distributedBernoulli variables, taking values in the set D = {d0, d1}. We obtain a recurrentformula in the finite horizon case, which gives the value of the game in terms ofassociated problems of smaller horizon. This allows...

Descripción completa

Autores Principales: Lobo Segura, Jaime, Cambronero, Santiago
Formato: Artículo
Idioma: Español
Publicado: 2015
Acceso en línea: http://revistas.ucr.ac.cr/index.php/matematica/article/view/225
http://hdl.handle.net/10669/12868
Sumario: We study optimal stopping problems for generalized averages of identically distributedBernoulli variables, taking values in the set D = {d0, d1}. We obtain a recurrentformula in the finite horizon case, which gives the value of the game in terms ofassociated problems of smaller horizon. This allows us to create algorithms for computingthe value of the game, as well as the optimal stopping time in these cases.Moreover, we present a series of aplicattions to the study of properties of the value asa function of the parameters.Keywords: Stopping times problems, generalized means, stopping times decomposition,sufficient class of stopping times, recurrence formulas, Bernoulli variables.