The multiplicative products between the Distribution (P ± i0)^{\lambda} and the Operators L^r{\delta} and K^r{\delta}

In this note we give a sense to some multiplicative products of distributions:i) (P ± i0)^{\lambda} . L^r {\delta}ii) (P± i0) ^{\lambda} . K^r{\delta }where (P ± i0)^{\lambda} is the distribution defined by the formula (2), P is the quadratic form defined by the formula (1), L^r is the ultrahyperbol...

Descripción completa

Autor Principal: Aguirre T., Manuel A.
Formato: Artículo
Idioma: Español
Publicado: 2015
Acceso en línea: http://revistas.ucr.ac.cr/index.php/matematica/article/view/123
http://hdl.handle.net/10669/12753
Sumario: In this note we give a sense to some multiplicative products of distributions:i) (P ± i0)^{\lambda} . L^r {\delta}ii) (P± i0) ^{\lambda} . K^r{\delta }where (P ± i0)^{\lambda} is the distribution defined by the formula (2), P is the quadratic form defined by the formula (1), L^r is the ultrahyperbolic operator defined by (5) and  K^r is the Klein-Gordon operator iterated r-times defined by the formula (15).